正方晶希土類化合物 Sm₂MgSi₂の磁性と伝導

埼玉大院理工 A, 埼玉大研究機構 B 沼倉凌介 A, 平林輝 A, 柴田紘平 A, 茂田井千晶 A, 牛窪佑紀 A, 小松慧士 A, 西川潮 A, 小坂昌史 A, 道村真司 A,B, 片野進 A

Magnetic and transport properties of tetragonal Sm₂MgSi₂

^AGraduate School of Science and Engineering, Saitama univ.,

^BResearch and Development Bureau, Saitama univ.

R.Numakura^A, H.Hirabayashi^A, K.Shibata^A, C.Motai^A, Y.Ushikubo^A,

K.Komatsu^A, U.Nishikawa^A, M.Kosaka^A, S.Michimura^{A,B} and S.Katano^A

希土類化合物 Sm_2MgSi_2 は空間群 P4/mbm に属する正方晶 Mo_2FeB_2 型の結晶構造をもつ 希土類金属間化合物である[1]。Mg を用いた自己フラックス法によって単相試料の作成に 成功した。得られた試料は走査型電子顕微鏡観察から $200\mu m$ 程度の大きさの単結晶の集まりであることが分かった。これまでに Sm_2MgSi_2 の物性に関する報告はなく、今回が初めてとなる。

帯磁率の温度変化から T_N =29K の反強磁性体であることが明らかとなり、比熱・電気抵抗率においても T_N で反強磁性秩序に伴う異常を観測した。この磁気相転移温度は Gd_2MgSi_2 の T_N =28K に匹敵する高さとなる[2]。常磁性領域から見積もった有効ボーア磁子 $\mu_{\rm eff}$, ワイス温度 θ_P はそれぞれ $\mu_{\rm eff}$ = $0.85\mu_B$, θ_P = -86K であり、化合物中で Sm のイオン 価数は Sm³+として存在していると考えられる。また χ = $C/(T-\theta_P)$ + χ_0 として求めた Van Vleck 項の値は Sm 1mol あたり χ_0 = 6.3×10^{-4} (emu/mol)となった。Van Vleck 項は χ_0 = $20N_A\mu_B^2/7k_B\Delta E$ として計算することができ[3]、J=5/2 と J=7/2 のエネルギー差は 1700K 程度と見積もることができた。磁気比熱は格子比熱として Lu_2MgSi_2 の比熱を差し引くことによって求めた。磁気比熱から見積もった磁気エントロピーは T_N で Rln2 に達することから基底状態は Kramers 二重項と考えられる。電気抵抗率は金属的に振る舞うものの T_N 以下で上昇に転じており、他の R_2MgSi_2 (R = Tb-Yb)と共通した反強磁性秩序に伴う superzone gap の形成を示唆している[4]。

- [1] R.Kraft and R.Pottgen, Monatsh. Chem. **136** (2005) 1707.
- [2] 沼倉凌介、日本物理学会 2015 秋季大会 17aPS-98.
- [3] A.M.Stewart, Phys. Rev. B6, 1985 (1972).
- [4] 沼倉凌介、日本物理学会 2014 秋季大会 8aPS-87.