Magnetic and transport properties of Tm₂MgSi₂

Ryosuke NUMAKURA¹, Shinji MICHIMURA^{1,2}, Susumu KATANO¹, Masashi KOSAKA¹

¹Graduate School of Science and Engineering, Saitama University, Saitama, Japan ²Research and Development Bureau, Saitama Univ., Saitama Japan

The ternary intermetallic compound Tm₂MgSi₂ is crystallizes in the tetragonal Mo₂FeB₂-type structure with space group P4/mbm [1]. The physical properties of this compound have not been reported hitherto. The single-phase polycrystalline sample of Tm₂MgSi₂ has been prepared by using an encapsulated molybdenum crucible. The excess magnesium, which is the constituent of this compound, has been sealed in the crucible as a flux. The X-ray powder diffraction exhibits only the characteristic lines of the Mo₂FeB₂-type structure. The temperature dependence of magnetic susceptibility shows the cusp, implying the antiferromagnetic ordering, and the corresponding specific heat anomaly is observed around $T_{\rm N} = 5.6$ K. The $\chi^{-1} - T$ curve satisfies the Curie-Weiss law above 100 K. The paramagnetic Curie temperature and effective magnetic moment are determined to be $\theta_P = -5.1$ K and $\mu_{\rm eff} = 7.45 \ \mu_{\rm B}$, respectively. This value of $\mu_{\rm eff}$ is in good agreement with the theoretical one for the Tm^{3+} . The entropy associated with this magnetic ordering is estimated to be Rln2 around T_N. Therefore, it is suggested that the crystalline electric field (CEF) ground state is doublet or two close-lying singlets. The electrical resistivity measurements reveal the metallic behavior between 300 K and 20 K, however, the resistivity shows the abrupt increase around $T_{\rm N}$. This anomaly is suppressed by applying magnetic fields, which eventually exhibits metallic behavior at B = 9 T. These features considered to be attributed to the formation of a magnetic superzone gap.

[1] R. Kraft and R. Pöttgen, Monatsh. Chem., 136, 1707 (2005).

E-mail for corresponding author : numakura@phy.saitama-u.ac.jp